Publications
Peer Reviewed
Mann, C. Z., Sales, A. C. and Gagnon-Bartsch, J. A.. (2025) “Combining observational and experimental data for causal inference considering data privacy” Journal of Causal Inference, 13(1). https://doi.org/10.1515/jci-2022-0081. [pdf] [code and data]
Mann, C. Z., Hansen, B. B., and Gaydosh, L. (2024) “Early effects of 2014 U.S. Medicaid expansions on mortality: Design-based inference for impacts on small subgroups despite small-cell suppression.” Annals of Applied Statistics, 18(4), 2887-2908. doi:10.1214/24-AOAS1910. [pdf] [code and data]
Mann, C. Z., Sales, A., Wang, J., and Gagnon-Bartsch, J. A. (2024) “Using Publicly Available Auxiliary Data to Improve Precision of Treatment Effect Estimation in a Randomized Efficacy Trial.” Proceedings of the 17th International Conference on Educational Data Mining, International Educational Data Mining Society, 518-525. doi:10.5281/zenodo.12729874. [pdf] [html] [code and data]
Lowe, J., Mann, C. Z., Wang, J., Sales, A., and Gagnon-Bartsch, J. A. (2024) “Power Calculations for Randomized Controlled Trials with Auxiliary Observational Data.” Proceedings of the 17th International Conference on Educational Data Mining, International Educational Data Mining Society, 469–475. doi:10.5281/zenodo.12729862. [pdf]
Mann, C. Z., Abshire, C., Yost, M., Kaatz, S., Swaminathan, L., Flanders, S. A., Prescott, H. C., and Gagnon-Bartsch, J. A. (2021) “Derivation and external validation of a simple risk score to predict in-hospital mortality in patients hospitalized for COVID-19.” Medicine, 100(40), e27422. doi:10.1097/ MD.0000000000027422. [pdf] [shiny app]
Mann, C. Z., Hansen, B. B., Gaydosh, L., and Lycurgus, T. (2021). “Protocol — Evaluating the effect of ACA Medicaid expansion on mortality during the COVID-19 pandemic using county level matching.” Observational Studies, 7(2), S1-S31. doi:10.1353/obs.2021.0034. [pdf] [code and data]
Lycurgus, T., Hansen, B. B., and Mann, C. Z. (2021). “Protocol: Evaluating the effect of ACA Medicaid expansion on 2015-2018 mortality through matching and weighting.” Observational Studies, 7(2), 1-13. doi:10.1353/obs.2021.0033.
In-Preparation
Mann, C. Z., Sales, A., and Gagnon-Bartsch, J. A. “A general framework for design-based treatment effect estimation in paired cluster-randomized experiments.” ArXiv Preprint [pdf]